Deep Learning with Big Health Data for Early Cancer Detection and Prevention

Jun Deng, PhD Professor Department of Therapeutic Radiology Yale University School of Medicine

November 4, 2017, Ohio River Valley Chapter Fall Symposium, Indianapolis, IN

- Big data basics
- Machine learning 101
- Big data applications in radiation oncology
- Cancer risk prediction via deep learning
- Conclusions
- Future work and outlook

We Live in An Ever-Growing Data World

- Over 90% of all the data in the world was created in the past 2 years
- Every 2 days we created as much information as we did from the beginning of time until 2003

Risky? Maybe. But also a good opportunity!

Front-end: Usage of the information

Middle-end: Optimisation of the existing solutions

Back-end: Conception of new solutions Monitoring : control, home automation, security

Process: « Smart Cities », default and failure detection, etc.

Flow analysis, energy consumption, etc.

pyright Nicolas Glady

Machine to Machine

<u>Wearable</u> technologies: virtual or augmented reality

Improvement of the experience: customer (marketing), sport or health, etc.

Behavior Analysis (geolocation, body indicators, etc.)

Social network: Facebook, Twitter, Amazon, etc.

Targeting: Marketing, Risk, Fraud, etc.

Emerging <u>needs</u> detection via text-mining

Human to Machine Human

Human to Human

Target Knows and Predicts

Target Knows and Predicts

- Each customer gets an ID, tied to credit card, name, email address, purchase history, and any demographic information
- Analyze historical buying data for all the women who have signed up for Target baby registries in the past
- Look for time-purchasing patterns
- Predict what the consumers most likely to buy next time
- Mail out coupons that are most likely to make consumers happy

Target Knows and Predicts

You are what you buy

Yale school of medicine

More Real World Big Data Applications

- UPS uses GPS and real-time sensors info to achieve more efficient delivery
- Google forecasts epidemic breakout based on real-time search inquiries
- Amazon recommends books and gift ideas based on your previous choices
- Medtronic predicts hypoglycemic episodes in diabetic patients nearly three hours before its onset, preventing devastating seizures
- Johnson & Johnson analyzes scientific papers to find new connections for drug development
- IBM Watson combs through electronic health records and journal articles from NIH to suggest the best treatment strategy for a cancer patient

Big Data Characteristics

- Four V's: <u>V</u>olume, <u>V</u>ariety, <u>V</u>elocity, and <u>V</u>eracity
- **Volume**: a large volume of data collected and stored continuously
- **Variety**: structured data in traditional databases, and unstructured text documents, emails, video, audio, notes and financial transactions
- Velocity: data is streaming in at unprecedented speed
- Veracity: bias, noise and abnormality in data
- What is important in big data analysis is **correlation** not causality

Machine Learning 101

- Artificial Intelligence has exploded since 2015
 - GPUs make parallel processing ever faster, cheaper, and more powerful
 - Big Data pouring in: images, text, transactions, mapping data
- Deep learning seeks to model data, decipher correlations and make decisions

Machine Learning Algorithms

- Information-based machine learning
 - Decision tree
 - Random forest
- Similarity-based machine learning
 - K nearest neighbor (KNN)
- Probability-based machine learning
 - Naïve Bayes
 - Markov chain Monte Carlo
- Error-based machine learning
 - Logistic regression
 - Support vector machines (SVM)
 - Artificial neural networks (ANN)

Machine Learning Algorithms

- Supervised machine learning
 - Decision tree
 - Random forest
 - Logistic regression
 - K nearest neighbor
 - Artificial neural networks
- Unsupervised machine learnin
 - Apriori algorithm
 - K-means
- Reinforcement learning
 - Markov Decision Process
 - Deep reinforcement learning (e.g., AlphaGo)

Differences and Similarities

"Reinforcement Learning is the true AI"

Deep Blue vs Kasparov

- IBM Deep Blue used a brute force search approach to beat Kasparov in 1997
- Deep Blue goes through all the possible moves to a depth of 6 to 20 moves

AlphaGo vs Lee Sedol & Ke Jie

- There are 10¹⁷⁰ possible positions in Go, too many to try a brute force search
- Google AlphaGo uses deep reinforcement learning to teach the machine to self-learn from its own moves, improve, and make better moves

Cancer Care Big Picture

E-Mail

Total data, all North American hospitals, by application type, 2010-2015 (TB)

Oncology 2005-2015 140 M patients 0.1-10 GB per patient 80% unstructured

Big Data in Radiation Oncology

Data type	Data elements	Single patient (average)	Cohort of 1 million patient	
Clinical reports	Text	10 MB	10 TB	
Laboratory results	Value, units, flag	0.3 MB	0.3 TB	
Administrative plus EHR data	Dx, Proc, Rx	2 MB	2 TB	
Exome genomic data (variants) (VCF)	Position, type, base(s)	125 MB	125 TB	
Imaging data	Multiple image formats	421.9 MB*	421.9 TB*	
Total		559.2 MB	559.2 TB	
Raw exome genomic data (BAM)	Position, base, quality	5.7 GB	5.7 PB	
Grand total		6.3 GB	6.3 PB	

Table 1 Sizes of genomic data compared to some existing clinical data domains

Abbreviations: BAM = binary alignment/map; Dx = diagnosis; $EB = exabyte (10^{18})$; EHR = electronic health record; $GB = gigabyte (10^9)$; $MB = megabyte (10^6)$; $PB = petabyte (10^{15})$; Proc = procedure; Rx = prescription; $TB = terabyte (10^{12})$; VCF = variant call format. * Imaging data estimate does not represent an average patient but is based on the cancer patient cohort in the Cancer Imaging Archive (13.5 TB of image data for approximately 32,000 cancer patients [data as of April 2015]) (4).

Tap Big Data in Radiation Oncology

Big Data Resource in Cancer and Biomedical Research

- National Cancer Database (NCDB): https://www.facs.org/quality-programs/cancer/ncdb
- NIH Big Data to Knowledge (BD2K): https://bd2kccc.org/
- NIH Data Sharing: https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html

NIH U.S. National Library of Medicine	9 Search					
Databases Find, Read, Learn Explore NLM Research at NLM NLM for You	NLM Customer Support 🛛 🗐 🔊 🕇 🎔 🗩					
NIH Trans-NIH BioMedical Informatics Coordinating Committee (BMIC) BMIC Home CDE Resource Portal						

NIH Data Sharing Repositories

This table lists NIH-supported data repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories. Are we missing a data sharing repository? <u>Contact us</u>.

Show 5	0 ⊻ ent	tries			Search:	
	IC	•	Repository Name 🍦	Repository Description	Data Submission Policy	Access to Data
NCI			<u>Cancer Nanotechnology</u> Laboratory (caNanoLab)	caNanol.ab is a data sharing portal designed to facilitate information sharing in the biomedical nanotechnology research community to expedite and validate the use of nanotechnology in biomedicine. caNanol.ab provides support for the annotation of nanomaterials with characterizations resulting from physico-chemical, in vitro, and in vivo assays and the sharing of these characterizations and associated nanotechnology protocols in a secure fashion.	How to submit your data to caNanoLab	How to access caNanoLab data
NCI			The Cancer Imaging Archive (TCIA)	The image data in The Cancer Imaging Archive (TCIA) is organized into purpose-built collections of subjects. The subjects typically have a	How to submit data to TCIA	How to access TCIA data

Inter-Plan Variation in IMRT/VMAT

Parotid DVHs/Head & Neck

Yale school of medicine

Bladder DVHs/Prostate

Knowledge-based Treatment Planning

- Based on big data of previous knowledge
- Deep learning for auto-segmentation
- Improved efficiency, reliability, and workflow
- RapidPlan (Varian)
- Pinnacle Auto-Planning (Philips)
- Monaco (Elekta)
- RayStation Automated Planning (RaySearch)

Knowledge-based Treatment Planning

Bladder DVHs/Prostate

Parotid DVHs/Head & Neck

Radiomics

- Biomarker: a measurable indicator of some biological state or condition
- Biomarker is a *key* element of personalized medicine
 - Prognostic biomarkers: likelihood of disease progression aggressive vs. indolent
 - Predictive biomarkers: sensitivity to therapy (drugs, radiation)
 - Early response biomarkers: spare patients ineffective treatment; speed up clinical trails
- Radiomics converts imaging data into a high dimensional mineable feature space using automatically extracted data-characterization algorithms
- Hypothesis is that these imaging features capture distinct phenotypic differences of tumors and have prognostic power and clinical significance

Radiomics

Machine Learning for Cancer Prognosis and Prediction

Cancer risk prediction											
Publication	N	Aethod	Cancer type		No of patients	Type of data	Accuracy	Validation m	ethod	Important feature	25
Ayer T et al. [19)] A	NN	Breast cance	г	62,219	Mammographic, demographic	AUC = 0.96	5 10-fold cross	validation	Age, mammograp	hy findings
Waddell M et a	l. [44] S	VM	Multiple my	eloma	80	SNPs	71%	Leave-one-ou validation	t cross	snp739514, snp52	21522, snp994532
Listgarten J et al	. [45] S	VM	Breast cance	r	174	SNPs	69%	20-fold cross	validation	snpCY11B2 (+) 45 (+) 4328 C/G	536 T/C snpCYP1B1
Stajadinovic et a	l. [46] B	BN	Colon carcin	omatosis	53	Clinical, pathologic	AUC = 0.71	Cross-validat	ion	Primary tumor his extent of peritonea	tology, nodal staging, al cancer
;			execution of the								-
	Publication	1	ML method	Cancer type	No of patients	Type of data	Accuracy	Validation method	Important feat	ures	2
2	Publication Chen Y-C et	t al. [50]	ML method ANN	Cancer type Lung cancer	No of patients 440	5 Type of data Clinical, gene expression	Accuracy 83.5%	Validation method Cross validation	Important feat	ures ge, N_stage	-
,	Publication Chen Y-C et Park K et al	ı t al. [50] l. [26]	ML method ANN Graph-based SSL algorithm	Cancer type Lung cancer Breast cancer	No of patients 440 162,500	 Type of data Clinical, gene expression SEER 	Accuracy 83.5% 71%	Validation method Cross validation 5-fold cross validation	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node	ures ge, N_stage g genes at diagnosis, 25	Cancon
,	Publication Chen Y-C et Park K et al Chang S-W	t al. [50] I. [26] et al. [32]	ML method ANN Graph-based SSL algorithm SVM	Cancer type Lung cancer Breast cancer Oral cancer	No of patients 440 162,500 31	 Type of data Clinical, gene expression SEER Clinical, genomic 	Accuracy 83.5% 71% 75%	Validation method Cross validation 5-fold cross validation Cross validation	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node Drink, invasion	ures ge, N_stage g genes at diagnosis, es 1, p63 gene	Cancer
	Publication Chen Y-C et Park K et al Chang S-W Xu X et al. [t al. [50] I. [26] et al. [32] [51]	ML method ANN Graph-based SSL algorithm SVM SVM	Cancer type Lung cancer Breast cancer Oral cancer Breast cancer	No of patients 440 162,500 31 295	 Type of data Clinical, gene expression SEER Clinical, genomic Genomic 	Accuracy 83.5% 71% 75% 97%	Validation method Cross validation 5-fold cross validation Cross validation Leave-one-out cross validation	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node Drink, invasion 50-gene signat	ures ge, N_stage g genes at diagnosis, es o, p63 gene ure	Cancer survival
	Publication Chen Y-C et Park K et al Chang S-W Xu X et al. [Gevaert O et	t al. [50] l. [26] et al. [32] [51] t al. [52]	ML method ANN Graph-based SSL algorithm SVM SVM BN	Cancer type Lung cancer Breast cancer Oral cancer Breast cancer Breast cancer	No of patients 440 162,500 31 295 97	 Type of data Clinical, gene expression SEER Clinical, genomic Genomic Clinical, microarray 	Accuracy 83.5% 71% 75% 97% AUC = 0.851	Validation method Cross validation 5-fold cross validation Cross validation Leave-one-out cross validation Hold-Out	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node Drink, invasion 50-gene signat Age, angioinva MMP9, HRASL	ures ge, N_stage 2 genes at diagnosis, es 0, p63 gene ure sion, grade A and RAB27B genes	Cancer survival prediction
	Publication Chen Y-C et Park K et al Chang S-W Xu X et al. [Gevaert O et Rosado P et	t al. [50] l. [26] et al. [32] [51] et al. [52] al. [53]	ML method ANN Graph-based SSL algorithm SVM SVM BN SVM	Cancer type Lung cancer Breast cancer Oral cancer Breast cancer Oral cancer	No of patients 440 162,500 31 295 97 69	 Type of data Clinical, gene expression SEER Clinical, genomic Genomic Clinical, microarray Clinical, molecular 	Accuracy 83.5% 71% 75% 97% AUC = 0.851 98%	Validation method Cross validation 5-fold cross validation Cross validation Leave-one-out cross validation Hold-Out Cross validation	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node Drink, invasion 50-gene signat Age, angioinva MMP9, HRASL/ TNM_stage, nu	ures ge, N_stage 2 genes at diagnosis, es h, p63 gene ure sion, grade A and RAB27B genes mber of recurrences	Cancer survival prediction
	Publication Chen Y-C et Park K et al Chang S-W Xu X et al. [Gevaert O et Rosado P et Delen D et a	t al. [50] I. [26] et al. [32] [51] et al. [52] al. [53] al. [54]	ML method ANN Graph-based SSL algorithm SVM SVM BN SVM DT	Cancer type Lung cancer Breast cancer Oral cancer Breast cancer Oral cancer Breast cancer	No of patients 440 162,500 31 295 97 69 200,000	 Type of data Clinical, gene expression SEER Clinical, genomic Genomic Clinical, microarray Clinical, molecular SEER 	Accuracy 83.5% 71% 75% 97% AUC = 0.851 98% 93%	Validation method Cross validation 5-fold cross validation Cross validation Leave-one-out cross validation Hold-Out Cross validation Cross validation	Important feat Sex, age, T_stag LCK and ERBB2 Tumor size, age number of node Drink, invasion 50-gene signat Age, angioinva MMP9, HRASL/ TNM_stage, nu Age at diagnosis number of node	ures ge, N_stage 2 genes at diagnosis, es a, p63 gene ure sion, grade A and RAB27B genes mber of recurrences s, tumor size, es, histology	Cancer survival prediction

Yale SCHOOL OF MEDICINE Kourou et al, Computational and Structural Biotechnology Journal 13 (2015) 8–17

The Question We Try to Answer

• Can we achieve individualized cancer risk prediction via machine learning with big health data?

National Health Interview Survey (NHIS)

- Publically available 1997-2015 data
- Total observations: 555,183
- Variables of interest:

Yale school of medicine

Age, Sex, Race, BMI, Smoking, Asthma, Diabetes, Strokes, Hypertension, Family History, Alcohol consumption, Hispanic ethnicity, Cardiovascular Disease, Physical Exercise, Chronic Obstructive Pulmonary Disease (COPD)

Demographics of the Data	Prostate Cancer	Non-Cancer
Average Age	68.94	45.19
Average BMI	27.83	27.56
Percentage That Have Ever Smoked	63.10%	49.02%
Percentage That Have COPD	4.69%	1.74%
Percentage That Have Asthma	8.97%	9.35%
Percentage That Have Diabetes	17.88%	7.89%
Percentage That Have Ever Had a	7.25%	2.39%
Stroke		
Percentage with Hypertension	60.31%	26.66%
Average Heart Disease Score	13.51%	4.41%
Percentage White	77.24%	79.01%
Percentage African American	19.61%	13.45%
Percentage Native American/Alaska	0.48%	0.87%
Native		
Percentage Asian	1.72%	5.16%
Percentage Multiracial	0.95%	1.51%
Percentage With Hispanic Ethnicity	6.89%	16.93%
Percentage That Perform Vigorous	28.05%	45.10%
Exercise at Least Once per Week		

Roffman et al. JCO - CCI, 2017 (under review)

Multi-Parameterized Deep Neural Network

Yale school of medicine

- Sensitivity (true positive rate, or probability of detection) measures the proportion of positives that are correctly identified as positive, = TP/P
- Specificity (true negative rate) measures the proportion of negatives that are correctly identified as negative, = TN/N
- Precision or positive predictive value (PPV), measures how precise is the prediction, = TP/(TP+FP)
- Since the data under-samples prostate cancer, a Bayesian formula is used to calculate the PPV:

 $PPV = \frac{\text{Sensitivity * Prevalence}}{(\text{Sensitivity * Prevalence} + (1 - \text{Specificity}) * (1 - \text{Prevalence}))}$

Yale school of medicine

Roffman et al. JCO - CCI, 2017 (under review)

Yale school of medicine

Roffman et al. JCO - CCI, 2017 (under review)

Tests	Requirements	Sensitivity	Specificity	AUC	
PSA ^{22,25}	Blood work	95%*	17.2%-19.2%*	0.53-0.549	
PHI ²⁵	Blood work	95% [*]	36%*	0.815	
4- kallikrein score ^{26,27}	Blood work, prior biopsy, DRE	N/A	N/A	0.82	
SelectMDx ²³	Blood work, DRE, urine sample, biomarkers	N/A	N/A	0.86	 No blood work No biopsy
Clinical Baseline Model ^{23,30}	Blood work, family history, DRE, prior biopsy	N/A	N/A	0.87	 No imaging
mpMRI ^{34,35,36}	MRI scan	58%-96% (optimal 95%)	23%-87% (optimal 84%)	N/A	No genomic data
Stockholm-3 ³³	Blood work, protein biomarkers, genetic markers, DRE, family history, prior biopsy	N/A	N/A	0.78	• No DRE
22-phage-peptide detector ⁴⁰	Serum and unique equipment to conduct the test	81.6%	88.2%	0.93	
Radiomics: 5 Haralick texture ^{38,39,41}	Plethora of imaging data	86%	88%	0.54-0.66	 Non-invasive Cost offective
Prostataclass ANN ^{31,32}	Blood work, DRE, prostate volume measurement	95%	22%-41% (dependent on the PSA value)	0.84	 Easy-to-implement
Our ANN	Health informatics commonly available in electronic medical records	95.08%	67.35%	0.8756	

Yale school of medicine

Roffman et al. JCO - CCI, 2017 (under review)

- work
- g
- ic data

SLIDE 31

Non-Melanoma Skin Cancer Prediction

Lung Cancer Prediction

Lung Nodule Detection with Reinforcement Learning

- LUNA (Lung Nodule Analysis) 2016 challenge
 - Publicly available LIDC/IDRI database
 - Annotations based on agreement from minimum 3 out of 4 radiologists
 - Total 888 CT: Nodule = 590 individuals; Non-Nodule = 198 individuals
 - Goal: a large-scale evaluation of automatic nodule detection algorithms
 - https://luna16.grand-challenge.org/

Yale school of medicine

Ali et al. Frontiers in Oncology, 2017 (to be submitted)

Conclusions

- Big health data is a gold mine waiting to be exploited
- Open data access is the bottleneck to big health data applications
- Identify which machine learning algorithm is best suited for specific problem
- It is possible to predict individual cancer risk via deep learning based solely on personal health informatics
- There are endless opportunities in machine learning with big health data

Deep Learning of Big Health Data

- Health data out-grows the depth and breadth of knowledge any physicians can accumulate in their lifetimes
- Apart from 3% clinical trial data, the remaining 97% is stored in the silo-like EMRs, barely accessible to the physicians as well as the patients who are actually the origin of the data
- Yet, more than 75% of people are currently willing to share their personal health data online for free, with appropriate de-identification
- Meanwhile, AI has shown great promise in tackling big health data to save lives, improve health care and patient outcome, and cut cost

Deep Learning of Big Health Data

Deep Learning of Big Health Data

- Cultivates a culture of data sharing by strengthening incentives and standards
- Engages patients for effective evidence generation and data sharing for care improvement
- Manages individual cancer risk for the most individualized and effective interventions
- Links the physicians with the patients for shared decisionmaking

Decentralized Portable Data

You Are Your Data, Your Data is You

In A Digital World

Acknowledgement

NIH/NIBIB: 1R01EB022589-01

Collaborators

Zhe Chen, Ph.D. (Medical Physics) Kenneth Roberts, M.D. (Rad Onc) Yawei Zhang, Ph.D. (Public Health) Michael Leapman, M.D. (Urology) Christine Ko, M.D. (Dermatology) Richard Yang, Ph.D. (Computer Science) Lynn Tanoue, M.D. (Internal Medicine) Melinda Irwin, Ph.D. (Epidemiology) **Postdocs and Graduate Students** David Roffman, Ph.D.

Javid Roffman, Ph.D. Issa Ali, B.S. Wazir Muhammad, Ph.D. Bradley Nartowt, Ph.D. James Duncan, Ph.D. (Radiology) James Yu, M.D. (Rad Onc) Steven Ma, Ph.D. (Biostatistics) Roy Decker, M.D. (Rad Onc) Michael Girardi, M.D. (Dermatology) Sahand Negahban, Ph.D. (Data Science) Amy Justice, M.D. (Public Health) Bonnie Rothberg, M.D. (Med Onc)

Liz Guo, MPH Ying Liang, Ph.D. Gregory Hart, Ph.D.

Thank You!

Q1. The risk factors that may increase a person's chances of developing cancer include:

- a. ionizing radiation to critical organs and tissues
- b. environmental conditions such as air quality and chemical absorption
- c. lifestyle pattern like smoking, alcohol drinking, and physical activity
- d. random mutations during stem cell divisions
- e. all of the above

Q1. The risk factors that may increase a person's chances of developing cancer include:

a. ionizing radiation to critical organs and tissues

- b. environmental conditions such as air quality and chemical absorption
- c. lifestyle pattern like smoking, alcohol drinking, and physical activity
- d. random mutations during stem cell divisions

e. all of the above

Answer: e

Reference: Danaei G, Hoorn SV, Lopez AD et al. *The Lancet*. 2005; 366(9499):1784-1793. Tomasetti C, Vogelstein B. *Science*. 2015; 347(6217):78-81.

Q2. The main reason(s) that machine learning can be applied in cancer risk prediction is:

a. more and more patient data is accumulated in the clinic routinely and available for miningb. computer hardware and chip performance has been improved significantly recentlyc. there are multiple carcinogenic factors entangled with hidden layers of correlationsd. all of the above

e. none of the above

Q2. The main reason(s) that machine learning can be applied in cancer risk prediction is:

- a. more and more patient data is accumulated in the clinic routinely and available for miningb. computer hardware and chip performance has been improved significantly recentlyc. there are multiple carcinogenic factors entangled with hidden layers of correlationsd. all of the above
- e. none of the above

Answer: d

Reference: Bibault J, Giraud P, Burgun A.. *Cancer Letters*. 2016; 382(1): 110-117

Q3. Which V is the biggest problem for extracting big data in radiation oncology?

- a. variability
- b. velocity
- c. volume
- d. value
- e. none of the above

Q3. Which V is the biggest problem for extracting big data in radiation oncology?

- a. variability
- b. velocity
- c. volume
- d. value
- e. none of the above

Answer: a

Reference: Mayo CS, Kessler ML, Eisbruch A. *Advances in Radiation Oncology* (2016) 1, 260-271. Q4. Which factors are important for enabling incorporation of big data into clinical practice?

a. use of standards

- b. database and analytics technologies
- c. modifying clinical process to improve availability and curation
- d. protecting patient health information
- e. all of the above

Q4. Which factors are important for enabling incorporation of big data into clinical practice?

- a. use of standards
- b. database and analytics technologies
- c. modifying clinical process to improve availability and curation
- d. protecting patient health information
- e. all of the above
- Answer: e
- **Reference:**

Mayo CS, Kessler ML, Eisbruch A. *Advances in Radiation Oncology* (2016) 1, 260-271. McNutt TR, Moore KL, Quon H. *Int J Radiat Oncol Biol Phys.* 2016 Jul 1;95(3):909-15.

Q5. Potentially important source of big data in radiation therapy are:

a. treatment plan and patient data stored in electronic medical record systemsb. insurance claims data

- c. RO-ILS
- d. b and c above
- e. all of the above

Q5. Potentially important source of big data in radiation therapy are:

a. treatment plan and patient data stored in electronic medical record systems

- b. insurance claims data
- c. RO-ILS
- d. b and c above
- e. all of the above

Answer: e

Reference: Potters L, Ford E, Evans S, Pawlicki T, Mutic S. *Int J Radiat Oncol Biol Phys.* 2016 Jul 1;95(3):885-9.