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We Live in An Ever-Growing Data World

e Over 90% of all the data in the world was created in the past 2 years

e Every 2 days we created as much information as we did from the
beginning of time until 2003
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Risky? Maybe. But also a good opportunity!
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Target Knows and Predicts

TARGET



Target Knows and Predicts

e Each customer gets an ID, tied to credit card, name, email address,
purchase history, and any demographic information

e Analyze historical buying data for all the women who have signed
up for Target baby registries in the past

e Look for time-purchasing patterns
e Predict what the consumers most likely to buy next time

e Mail out coupons that are most likely to make consumers happy
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Target Knows and Predicts

,’r’

You are what you buy
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More Real World Big Data Applications

UPS uses GPS and real-time sensors info to achieve more efficient delivery
Google forecasts epidemic breakout based on real-time search inquiries
Amazon recommends books and gift ideas based on your previous choices

Medtronic predicts hypoglycemic episodes in diabetic patients nearly three
hours before its onset, preventing devastating seizures

Johnson & Johnson analyzes scientific papers to find new connections for
drug development

IBM Watson combs through electronic health records and journal articles
from NIH to suggest the best treatment strategy for a cancer patient
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Big Data Characteristics

 Four V’'s: Volume, Variety, Velocity, and Veracity
« Volume: a large volume of data collected and stored continuously

e Variety: structured data in traditional databases, and unstructured
text documents, emails, video, audio, notes and financial transactions

 Velocity: data is streaming in at unprecedented speed
 Veracity: bias, noise and abnormality in data

« What is important in big data analysis is correlation not causality
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Machine Learning 101

« Artificial Intelligence has exploded since 2015
— GPUs make parallel processing ever faster, cheaper, and more powerful
— Big Data pouring in: images, text, transactions, mapping data

* Deep learning seeks to model data, decipher correlations and make decisions

il N \1CHINE
LEARNING
LEARNING
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Machine Learning Algorithms

Information-based machine learning
— Decision tree
— Random forest

Similarity-based machine learning
— K nearest neighbor (KNN)

Probability-based machine learning
— Nalve Bayes

— Markov chain Monte Carlo
Error-based machine learning

— Logistic regression

— Support vector machines (SVM)

— Atrtificial neural networks (ANN)
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Machine Learning Algorithms

e Supervised machine learning + Labeled date
— Decision tree s Prodiet cxncomaiis
— Random forest
— Logistic regression
— K nearest neighbor
— Artificial neural networks

e Unsupervised machine learning
— Apriori algorithm

— K-means
- - « No labels * Decision process
e Reinforcement learning + No feedback + Reward system
* "Find hidden structure” * Learn series of actions

— Markov Decision Process
— Deep reinforcement learning (e.g., AlphaGo)
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Differences and Similarities

Supervised Unsupervised Reinforcement
Learning Learning Generating data
known unknown
patterns patterns Learning patterns

“Reinforcement Learning is the true Al”
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Deep Blue vs Kasparov

e |IBM Deep Blue used a brute force search approach to beat Kasparov in 1997
e Deep Blue goes through all the possible moves to a depth of 6 to 20 moves
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AlphaGo vs Lee Sedol & Ke Jie

e There are 1070 possible positions in Go, too many to try a brute force search

e Google AlphaGo uses deep reinforcement learning to teach the machine to

self-learn from its own moves, improve, and make better moves
i €
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Cancer Care Big Picture

Total data, all North American hospitals, by application type, 2010-2015 (TB)
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4,000,000
3,500,000
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3
Oncology ad |
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2005-2015 e | m
140 M patients - . '
=

500,000
.
0.1-10 GB per patient Bl BN BN BN B N
2010 2011 2012 2013 2014 2015
Research Data | 45007 | ses53 72,331 | 89,876 | 110,893 137,035
B Non-Clinical Imaging | 128307 | 159,959 | 202576 | 249,808 | 306,774 375,566
8 00/0 Uns.r r UCfU re d 8 General Unstructured Data/File Services 175039 | 216,070 270544 | 330523 | 402430 490,478
B E-Mail 66,391 80,533 99,176 119,009 142,244 170,060
= Electronic Health Records | 105,464 | 163,065 | 247,852 | 358,524 | 508,706 | 713,673
Clinical Imaging | 43306 | 603,24 | Bs74ss | 1,182,200 | 1620810 | 2,215,525
m Administrative Applications | sas1s | 6686 | 82998 | 100388 | 121,164 146,007

Source: Enterprise Strategy Group, 2011.
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Big Data in Radiation Oncology

Table 1 Sizes of genomic data compared to some existing clinical data domains

Data type Data elements Single patient (average) Cohort of 1 million patients

Clinical reports Text 10 MB 10 TB
Laboratory results Value, units, flag 0.3 MB 0.3TB
Administrative plus EHR data Dx, Proc, Rx 2 MB 2TB

Exome genomic data (variants) (VCF) Position, type, base(s) 125 MB 125 TB

Imaging data Multiple image formats 421.9 MB* 4219 TB*

Total 559.2 MB 559.2 TB

Raw exome genomic data (BAM) Position, base, quality 5.7 GB J.1 PB

Grand total 6.3 GB 6.3 PB

Abbreviations: BAM = binary alignment/map; Dx = diagnosis; EB = exabyte (10'®); EHR = electronic health record; GB = gigabyte (10%);
MB = megabyte (10%; PB = petabyte (10"%): Proc = procedure; Rx = prescription; TB = terabyte (10"%); VCF = variant call format.

* Imaging data estimate does not represent an average patient but is based on the cancer patient cohort in the Cancer Imaging Archive (13.5 TB of
image data for approximately 32,000 cancer patients [data as of April 2015]) (4).
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Tap Big Data in Radiation Oncology
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targeted tx,
immune tx,
& other tx

Physics & Dosimetry

& personalize

Societal Values:
Cost and effectiveness
Policies, procedures, protocols
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Rosenstein et al, Int J Radiol Oncol Biol Phys 2016
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Big Data Resource in Cancer and Biomedical Research

e National Cancer Database (NCDB)Z https://www.facs.org/quality-programs/cancer/ncdb
 NIH Big Data to Knowledge (BD2K): https://bd2kccc.org/
e NIH Data Sharing: https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html
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m U.S. National Library of Medicine

Find, Read, Learn | Explore Researchat NLM | NLM fe

N|H> Trans-NIH BioMedical Informatics Coordinating Committee (BMIC)

Home

NIH Data Sharing Repositories

NLM Customer Support

®0000

BMIC Home | CDE Resource Portal

This table lists NIH-supported data repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and
others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about
biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that
you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional
information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories. Are we missing a data

sharing repository? Contact us.

Show entries

Search: |

ic - Repository Name Repository Description Data Submission Policy Access to Data
NCI Cancer Nanotechnology caNanoLab is a data sharing portal designed 1o facilitate information How to submit your data to How to access caNanoLab
Laboratory (caNanolab) sharing in the biomedical nanotechnology research community to caNanolab
expedite and validate the use of nanotechnology in biomedicine
caNanaLab provides support for the annotation of nanomaterials with
characterizations resulting from physico-chemical, in vitro, and in vivo
assays and the sharing of these characterizations and associated
nanatechnology protocols in a secure fashion.
NCI The Cancer Imaging The image data in The Cancer Imaging Archive (TCIA) is organized into How to submit data to TCIA How to access TCIA data
Archive (TCIA) purpose-built collections of subjects. The subjects typically have a
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Inter-Plan Variation in IMRT/VMAT

A RTOG guidelines .
v ™ Clinical Plans

A RTOG guidelines._
= Clinical Plans

Percent Volume (%)
Parcent Volume (%)

00 10 20 30 40 50 60 70 80 ﬂﬂ
Dose (Gy) Dose (Gy)
Bladder DVHs/Prostate Parotid DVHs/Head & Neck
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Knowledge-based Treatment Planning

e Based on big data of previous knowledge

e Deep learning for auto-segmentation

e Improved efficiency, reliability, and workflow
e RapidPlan (Varian)

e Pinnacle Auto-Planning (Philips)

e Monaco (Elekta)

e RayStation Automated Planning (RaySearch)
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Knowledge-based Treatment Planning
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Radiomics

Biomarker: a measurable indicator of some biological state or condition

Biomarker is a key element of personalized medicine
— Prognostic biomarkers: likelihood of disease progression — aggressive vs. indolent
— Predictive biomarkers: sensitivity to therapy (drugs, radiation)

— Early response biomarkers: spare patients ineffective treatment; speed up clinical trails

Radiomics converts imaging data into a high dimensional mineable feature
space using automatically extracted data-characterization algorithms

Hypothesis is that these imaging features capture distinct phenotypic
differences of tumors and have prognostic power and clinical significance
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Radiomics
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Machine Learning for Cancer Prognosis and Prediction

Cancer risk prediction

Publication Method  Cancer type No of Type of data Accuracy Validation method Important features
patients
Ayer Tet al. [19] ANN Breast cancer 62,219 Mammographic, AUC = 0.965 10-fold cross validation = Age, mammography findings
demographic
Waddell M et al. [44] SVM Multiple myeloma 80 SNPs 71% Leave-one-out cross snp739514, snp521522, snp994532
validation
Listgarten ] et al. [45] SVM Breast cancer 174 SNPs 69% 20-fold cross validation ~ snpCY11B2 (+) 4536 T/C snpCYP1B1
(+) 4328 C/G
Stajadinovic et al. [46] BN Colon carcinomatosis 53 Clinical, pathologic ~ AUC = 0.71 Cross-validation Primary tumor histology, nodal staging,
extent of peritoneal cancer
Publication ML method Cancer type  No of patients Type of data Accuracy Validation method Important features
Chen Y-Cet al. [50] ANN Lung cancer 440 Clinical, gene expression 83.5% Cross validation Sex, age, T_stage, N_stage
LCK and ERBB2 genes
Park K et al. [26] Graph-based SSL  Breast cancer 162,500 SEER 7% 5-fold cross validation Tumor size, age at diagnosis,
algorithm number of nodes
Chang S-W et al. [32] SVM Oral cancer 31 Clinical, genomic 75% Cross validation Drink, invasion, p63 gene Ca’n Ce r
XuXetal.[51] SVM Breast cancer 295 Genomic 97% Leave-one-out cross  50-gene signature H
validation su rVIVaI
Gevaert Oet al.[52] BN Breast cancer 97 Clinical, microarray AUC = 0.851 Hold-Out Age, angioinvasion, grade H H
MMP9, HRASLA and RAB27B genes p rEd | Ctl O n
Rosado P et al. [53] SVM Oral cancer 69 Clinical, molecular 98% Cross validation TNM_stage, number of recurrences
Delen D et al. [54] DT Breast cancer 200,000 SEER 93% Cross validation Age at diagnosis, tumor size,
number of nodes, histology
Kim ] et al. [36] SSL Co-training  Breast cancer 162,500 SEER 76% 5-fold cross validation  Age at diagnosis, tumor size,

algorithm

number of nodes, extension of tumor
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The Question We Try to Answer

e Can we achieve individualized cancer risk prediction
via machine learning with big health data?

Yale scHOOL OF MEDICINE SLIDE 25



National Health Interview Survey (NHIS)

; ; Demographics of the Data Prostate Cancer Non-Cancer
e Publically available 1997-2015 data e 53 0 7510
. ] Average BMI 27.83 27.56
* Total observations: 555,183 Percentage That Have Ever Smoked 63.10% 49.02%
« Variables of interest: Percentage That Have COPD 4.69% 1.74%
’ Percentage That Have Asthma 8.97% 9.35%
Age, Sex, Race, BMI, Smoking, Percentage That Have Diabetes 17.88% 7.89%
Asthma, Diabetes, Strokes, Percentage That Have Ever Had a 7.25% 2.39%
Hypertension, Family History, ST E _ _
Alconol consumption, Hispanic — ferenageuritaperenion 9032
ethn|_0|ty, Card_lovascular_ Disease, Percentage White T I
PhyS|CaI _ExerC'Se’ Chronl(_; Percentage African American 19.61% 13.45%
Obstructive Pulmonary Disease Percentage Native American/Alaska 0.48% 0.87%
(COPD) Native
Percentage Asian 1.72% 5.16%
Percentage Multiracial 0.95% 1.51%
Percentage With Hispanic Ethnicity 6.89% 16.93%
Percentage That Perform Vigorous 28.05% 45.10%

Exercise at Least Once per Week
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Multi-Parameterized Deep Neural Network

Input Layer

Hidden Layer 1  Hidden Layer 2

Diabetic Status

Ever Smoker
Output Layer

1 ’ Cancer Status

Gender

Age

Heart Diseases

Race
Hispanic Ethnicity

Bias Term 2

Bias Term 1
Roffman et al. JCO - CCI, 2017 (under review) SLIDE 27
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Multi-Parameterized DNN for Prostate Cancer Prediction

e Sensitivity (true positive rate, or probability of detection) measures the
proportion of positives that are correctly identified as positive, = TP/P

e Specificity (true negative rate) measures the proportion of negatives
that are correctly identified as negative, = TN/N

e Precision or positive predictive value (PPV), measures how precise is
the prediction, = TP/(TP+FP)

e Since the data under-samples prostate cancer, a Bayesian formula is
used to calculate the PPV:

Sensitivity * Prevalence

PPV =
(Sensitivity * Prevalence + (1 — Specificity ) * (1 — Prevalence))
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Multi-Parameterized DNN for Prostate Cancer Prediction

DNN training

DNN validation

Sensitivity: 45%
Specificity: 91%
PPV: 46%

Sensitivity: 45%
Specificity: 91%
PPV: 44%
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Multi-Parameterized DNN for Prostate Cancer Prediction

0.9

T

Sensitivity
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—Training AUC = 0.8736 (95% CI 0.8606-0.8866)
—---Validation AUC = 0.8732 (95% CI 0.8533-0.8930)
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Multi-Parameterized DNN for Prostate Cancer Prediction

“Tests ﬁequirements Sensitivity Specificity AUC
PSA?2225 Blood work 95%"* 17.2%-19.2%" 0.53-0.549
PHI? Blood work 95%" 36%" 0.815
4- kallikrein score?6:27 Blood work, prior biopsy, DRE N/A N/A 0.82
SelectMDx? Blood work, DRE, urine sample, N/A N/A 0.86
biomarkers

Clinical Baseline Model?23:30 Blood work, family history, DRE, prior N/A N/A 0.87
biopsy

mpMR|34:35.36 MRI scan 58%-96% 23%-87% (optimal ~ N/A

(optimal 95%) 84%)

Stockholm-333 Blood work, protein biomarkers, genetic N/A N/A 0.78
markers, DRE, family history, prior
biopsy

22-phage-peptide detector4© Serum and unique equipment to conduct 81.6% 88.2% 0.93
the test

Radiomics: 5 Haralick Plethora of imaging data 86% 88% 0.54-0.66

texturg3839.41

Prostataclass ANN31:32 Blood work, DRE, prostate volume 95% 22%-41% 0.84
measurement (dependent on the

PSA value)
Our ANN Health informatics commonly available 95.08% 67.35% 0.8756

in electronic medical records
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No blood work
No biopsy

No imaging

No genomic data
No DRE

Non-invasive
Cost-effective
Easy-to-implement
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Non-Melanoma Skin Cancer Prediction
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Quantity of Interest

Lung Cancer Prediction
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Lung Nodule Detection with Reinforcement Learning

e LUNA (Lung Nodule Analysis) 2016 challenge
— Publicly available LIDC/IDRI database
— Annotations based on agreement from minimum 3 out of 4 radiologists
— Total 888 CT: Nodule =590 individuals; Non-Nodule = 198 individuals
— Goal: a large-scale evaluation of automatic nodule detection algorithms

— https://lunal6.grand-challenge.org/ Accuracy

10
OBSERVATIONS
] 0.8 |
.. 06

Agent Environment

+

ACTIONS 0 P P &0 80 100
Epoch
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Conclusions

e Big health data is a gold mine waiting to be exploited

e Open data access is the bottleneck to big health data applications

e Identify which machine learning algorithm is best suited for specific
problem

e Itis possible to predict individual cancer risk via deep learning based solely
on personal health informatics

e There are endless opportunities in machine learning with big health data
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Deep Learning of Big Health Data

e Health data out-grows the depth and breadth of knowledge any
physicians can accumulate in their lifetimes

e Apart from 3% clinical trial data, the remaining 97% is stored in the
silo-like EMRs, barely accessible to the physicians as well as the
patients who are actually the origin of the data

e Yet, more than 75% of people are currently willing to share their
personal health data online for free, with appropriate de-identification

 Meanwhile, Al has shown great promise in tackling big health data to
save lives, improve health care and patient outcome, and cut cost
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Deep Learning of Big Health Data

The Powor of Healthcare Data
The Body as a Source

The Bodym dy
e

= B
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Deep Learning of Big Health Data

e Cultivates a culture of data sharing by strengthening
Incentives and standards

e Engages patients for effective evidence generation and data
sharing for care improvement

e Manages individual cancer risk for the most individualized
and effective interventions

e Links the physicians with the patients for shared decision-
making
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You Are Your Data, Your Data is You
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In A Digital World
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Q1. The risk factors that may increase a person’s chances

of developing cancer include:

a. lonizing radiation to critical organs and tissues

b. environmental conditions such as air quality and chemical absorption
c. lifestyle pattern like smoking, alcohol drinking, and physical activity
d. random mutations during stem cell divisions

e. all of the above
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Q1. The risk factors that may increase a person’s chances

of developing cancer include:

a. lonizing radiation to critical organs and tissues

b. environmental conditions such as air quality and chemical absorption
c. lifestyle pattern like smoking, alcohol drinking, and physical activity
d. random mutations during stem cell divisions

e. all of the above

Answer: e

Reference:
Danaei G, Hoorn SV, Lopez AD et al. The Lancet. 2005; 366(9499):1784-1793.
Tomasetti C, Vogelstein B. Science. 2015; 347(6217):78-81.

Yale SCHOOL OF MEDICINE SLIDE 46



Q2. The main reason(s) that machine learning can be

applied in cancer risk prediction Is:

a. more and more patient data is accumulated in the clinic routinely and available for mining
b. computer hardware and chip performance has been improved significantly recently

c. there are multiple carcinogenic factors entangled with hidden layers of correlations

d. all of the above

e. none of the above
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Q2. The main reason(s) that machine learning can be

applied in cancer risk prediction Is:

a. more and more patient data is accumulated in the clinic routinely and available for mining
b. computer hardware and chip performance has been improved significantly recently

c. there are multiple carcinogenic factors entangled with hidden layers of correlations

d. all of the above

e. none of the above

Answer: d

Reference:
Bibault J, Giraud P, Burgun A.. Cancer Letters. 2016; 382(1): 110-117
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Q3. Which V is the biggest problem for extracting big

data in radiation oncology?

a. variability
b. velocity

c. volume

d. value

e. none of the above
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Q3. Which V is the biggest problem for extracting big

data in radiation oncology?

a. variability

b. velocity

c. volume

d. value

e. none of the above
Answer: a

Reference:
Mayo CS, Kessler ML, Eisbruch A. Advances in Radiation Oncology (2016) 1,
260-271.
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Q4. Which factors are important for enabling

Incorporation of big data into clinical practice?

a. use of standards

b. database and analytics technologies

c. modifying clinical process to improve availability and curation
d. protecting patient health information

e. all of the above
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Q4. Which factors are important for enabling

Incorporation of big data into clinical practice?

a. use of standards

b. database and analytics technologies
c. modifying clinical process to improve availability and curation
d. protecting patient health information

e. all of the above

Answer: e

Reference:
Mayo CS, Kessler ML, Eisbruch A. Advances in Radiation Oncology (2016) 1, 260-271.
McNutt TR, Moore KL, Quon H. Int J Radiat Oncol Biol Phys. 2016 Jul 1;95(3):909-15.
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Q5. Potentially important source of big data in radiation

therapy are:

a. treatment plan and patient data stored in electronic medical record systems
b. insurance claims data

c. RO-ILS

d. b and c above

e. all of the above
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Q5. Potentially important source of big data in radiation

therapy are:
a. treatment plan and patient data stored in electronic medical record systems
b. insurance claims data
c. RO-ILS
d. b and c above

e. all of the above

Answer: e

Reference:

Potters L, Ford E, Evans S, Pawlicki T, Mutic S. Int J Radiat Oncol Biol Phys. 2016 Jul
1;95(3):885-9.
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